Call the Professionals!
for Your Next Roofing Project.
Astro Roofing is a locally owned and operated business that has served the Northeast Tarrant County for over 25 years. We specialize in residential re-roofing, siding and window services.

www.astroroofing.com  |  Astro Roofing Company  |  "We Are The People You Can Trust." |  (817) 285-ROOF  |  Designed & Copyrighted by www.elegantwebstudio.com

What is a radiant barrier?

Radiant barriers are materials that are installed in buildings to reduce summer heat gain and winter heat loss, and hence to reduce building heating and cooling energy usage. The potential benefit of attic radiant barriers is primarily in reducing air-conditioning cooling loads in warm or hot climates. Radiant barriers usually consist of a thin sheet or coating of a highly reflective material, usually aluminum, applied to one or both sides of a number of substrate materials. These substrates include kraft paper, plastic films, cardboard, plywood sheathing, and air infiltration barrier material. Some products are fiber reinforced to increase the durability and ease of handling.

Radiant barriers can be used in residential, commercial, and industrial buildings. However, this fact sheet was developed only for applications of radiant barriers in ventilated attics of residential buildings. For information on other applications, see the references at the end of the Fact Sheet.

How are radiant barriers installed in a residential attic?

Radiant barriers may be installed in attics in several configurations. The simplest is to lay the radiant barrier directly on top of existing attic insulation, with the reflective side up. This is often called the attic floor application. Another way to install a radiant barrier is to attach it near the roof. The roof application has several variations. One variation is to attach the radiant barrier to the bottom surfaces of the attic truss chords or rafter framing. Another is to drape the radiant barrier over the tops of the rafters before the roof deck is applied. Still another variation is to attach the radiant barrier directly to the underside of the roof deck.

How do radiant barriers work?

Radiant barriers work by reducing heat transfer by thermal radiation across the air space between the roof deck and the attic floor, where conventional insulation is usually placed. All materials give off, or emit, energy by thermal radiation as a result of their temperature. The amount of energy emitted depends on the surface temperature and a property called the "emissivity" (also called the "emittance"). The emissivity is a number between zero (0) and one (1). The higher the emissivity, the greater the emitted radiation.

A closely related material property is the "reflectivity" (also called the "reflectance"). This is a measure of how much radiant heat is reflected by a material. The reflectivity is also a number between 0 and 1 (sometimes, it is given as a percentage, and then it is between 0 and 100%). For a material that is opaque (that is, it does not allow radiation to pass directly through it), when the emissivity and reflectivity are added together, the sum is one (1). Hence, a material with a high reflectivity has a low emissivity, and vice versa. Radiant barrier materials must have high reflectivity (usually 0.9, or 90%, or more) and low emissivity (usually 0.1 or less), and must face an open air space to perform properly.

On a sunny summer day, solar energy is absorbed by the roof, heating the roof sheathing and causing the underside of the sheathing and the roof framing to radiate heat downward toward the attic floor. When a radiant barrier is placed on the attic floor, much of the heat radiated from the hot roof is reflected back toward the roof. This makes the top surface of the insulation cooler than it would have been without a radiant barrier and thus reduces the amount of heat that moves through the insulation into the rooms below the ceiling.

Under the same conditions, a roof mounted radiant barrier works by reducing the amount of radiation incident on the insulation. Since the amount of radiation striking the top of the insulation is less than it would have been without a radiant barrier, the insulation surface temperature is lower and the heat flow through the insulation is reduced.

Radiant barriers can also reduce indoor heat losses through the ceiling in the winter. Radiant barriers reduce the amount of energy radiated from the top surface of the insulation, but can also reduce beneficial heat gains due to solar heating of the roof. The net benefits of radiant barriers for reducing winter heat losses are still being studied.

How does a radiant barrier differ from conventional attic insulation?

Radiant barriers perform a function that is similar to that of conventional insulation, in that they reduce the amount of heat that is transferred from the attic into the house. They differ in the way they reduce the heat flow. A radiant barrier reduces the amount of heat radiated across an air space that is adjacent to the radiant barrier. The primary function of conventional insulation is to trap still air within the insulation, and hence reduce heat transfer by air movement (convection). The insulation fibers or particles also partially block radiation heat transfer through the space occupied by the insulation.

Conventional insulations are usually rated by their R-value. Since the performance of radiant barriers depends on many variables, simple R-value ratings have not been developed for them.

What are the characteristics of a radiant barrier?

All radiant barriers have at least one reflective (or low emissivity) surface, usually a sheet or coating of aluminum. Some radiant barriers have a reflective surface on both sides. Both types work about equally well, but if a one-sided radiant barrier is used, the reflective surface must face the open air space. For example, if a one-sided radiant barrier is laid on top of the insulation with the reflective side facing down and touching the insulation, the radiant barrier will lose most of its effectiveness in reducing heating and cooling loads.

Emissivity is the property that determines how well a radiant barrier will perform. This property is a number between 0 and 1, with lower numbers indicating better potential for performance. The emissivity of typical, clean, unperforated radiant barriers is about 0.03 to 0.05. Hence they will have a reflectivity of 95 to 97 percent. Some materials may have higher emissivities. It is not always possible to judge the emissivity just by visual appearance. Measured emissivity values should be part of the information provided by the manufacturer.

A radiant barrier used in the attic floor application must allow water vapor to pass through it. This is necessary because, during the winter, if there is no effective vapor retarder at the ceiling, water vapor from the living space may condense and even freeze on the underside of a radiant barrier lying on the attic floor. In extremely cold climates or during prolonged periods of cold weather, a layer of condensed water could build up. In more moderate climates, the condensed water could evaporate and pass through the radiant barrier into the attic space. While most uniform aluminum coatings do not allow water vapor to pass through them, many radiant barrier materials do allow passage of water vapor. Some allow water vapor passage through holes or perforations, while others have substrates that naturally allow water vapor passage without requiring holes. However, excessively large holes will increase the emissivity and cause a reduction in the radiant barrier performance. The ability to allow water vapor to pass through radiant barrier materials is not needed for the roof applications.

What should a radiant barrier installation cost?

Costs for an attic radiant barrier will depend on several factors, including the following:

Whether the radiant barrier is installed by the homeowner or by a contractor.
Whether the radiant barrier will be installed in a new home (low cost) or in an existing home (possibly higher cost if done by a contractor).
What extra "features" are desired; e.g., a radiant barrier with perforations and reinforcements may be more expensive than a "basic" radiant barrier.
Any necessary retrofit measures such as adding venting (soffit, ridge, etc.)
Whether the radiant barrier is installed on the attic floor or on the rafters.
Radiant barrier costs vary widely. As with most purchases, some comparison shopping can save you money. A survey of nine radiant barrier manufacturers and contractors representing 14 products, taken by the Reflective Insulation Manufacturers Association (RIMA) in 1989, shows the installed costs of radiant barriers to range as shown in Table 1.
In some cases, radiant barriers are included in a package of energy saving features sold to homeowners. When considering a "package deal", you may want to ask for an itemized list that includes material and installation costs for all measures included. Then shop around to see what each item would cost if purchased individually before you make a decision.

What should conventional insulation cost?

Heating and cooling bills can also be reduced by adding conventional attic insulation. So that you can have some basis for comparison shopping, typical installed costs for adding various levels of insulation are given in Table 2. These costs are typical for insulation installed by contractors. Actual insulation costs will vary from region to region of the country, will vary with the type of insulation selected (blown, or loose-fill, insulation is usually lower in price than "batt" insulation), and may vary from one local contractor to another. You can expect to deduct 20% to 50% for a do-it-yourself application.

You should always check with your local or state energy office or building code department for current insulation recommendations or see the DOE INSULATION FACT SHEET.

Effect of Radiant Barriers on Heating and Cooling Bills

Have heating and cooling effects been tested?
At present, there is no standardized method for testing the effectiveness of radiant barriers in reducing heating and cooling bills. But numerous field tests have been performed that show, depending on the amount of existing conventional insulation and other factors, radiant barriers are effective in reducing cooling bills, and also possibly heating bills.

Most of these field tests have been performed in warm climates where a large amount of air-conditioning is used. The Florida Solar Energy Center (FSEC) at Cape Canaveral has performed tests for a number of years using attic test sections, and has also performed tests with full-size houses. A test using a duplex house in Ocala, Florida has been performed by the Mineral Insulation Manufacturers Association. The Tennessee Valley Authority has performed a number of winter and summer tests using small test cells in Chattanooga, Tennessee. The Oak Ridge National Laboratory (ORNL) has performed a series of tests using three full-size houses near Knoxville, Tennessee. The ORNL tests included summer and winter observations. So far, very little testing has been done in climates colder than that of Knoxville. Also, little testing has been done in hot, arid climates such as the southwestern United States.

The tests to date have shown that in attics with R-19 insulation, radiant barriers can reduce summer ceiling heat gains by about 16 to 42 percent compared to an attic with the same insulation level and no radiant barrier. These figures are for the average reduction in heat flow through the insulation path. They do not include effects of heat flow through the framing members. See Tables A1 and A2 in the Appendix for a comparison of measured performance.

THIS DOES NOT MEAN THAT A 16 TO 42 PERCENT SAVINGS IN UTILITY BILLS CAN BE EXPECTED. Since the ceiling heat gains represent about 15 to 25 percent of the total cooling load on the house, a radiant barrier would be expected to reduce the space cooling portion of summer utility bills by less than 15 to 25 percent. Multiplying this percentage (15 to 25 percent) by the percentage reduction in ceiling heat flow (16 to 42 percent) would result in a 2 to 10 percent reduction in the cooling portion of summer utility bills. However, under some conditions, the percentage reduction of the cooling portion of summer utility bills may be larger, perhaps as large as 17 percent. The percentage reduction in total summer utility bills, which also include costs for operating appliances, water heaters, etc., would be smaller. Tests have shown that the percentage reductions for winter heat losses are lower than those for summer heat gains.

Experiments with various levels of conventional insulation show that the percentage reduction in ceiling heat flow due to the addition of a radiant barrier is larger with lower amounts of insulation. Since the fraction of the whole-house heating and cooling load that comes from the ceiling is larger when the amount of insulation is small, radiant barriers produce the most energy savings when used in combination with lower levels of insulation. Similarly, radiant barriers produce significantly less energy savings when used in combination with high levels of insulation.

Most of the field tests have been done with clean radiant barriers. Laboratory measurements have shown that dust on the surface of aluminum foil increases the emissivity and decreases the reflectivity. This means that dust or other particles on the exposed surface of a radiant barrier will reduce its effectiveness. Radiant barriers installed in locations that collect dust or other surface contaminants will have a decreasing benefit to the homeowner over time.

The attic floor application is most susceptible to accumulation of dust, while downward facing reflective surfaces used with many roof applications are not likely to become dusty. When radiant barriers are newly installed, some testing shows that the attic floor application will work better than the roof applications. As dust accumulates on the attic floor application, its effectiveness will gradually decrease. After a long enough period of time, a dusty attic floor application will lose much of its effectiveness. Predictive modeling results, based on testing, suggest that a dusty attic floor application will lose about half of its effectiveness after about one to ten years.

Testing of radiant barriers has been primarily concerned with the effect of radiant barriers on the heat gains or losses through the ceiling. Another aspect of radiant barriers may be important when air-conditioning ducts are installed in the attic space. The roof applications of radiant barriers can result in lowered air temperatures within the attic space, which in turn can reduce heat gains by the air flowing through the ducts, thus increasing the efficiency of the air-conditioning system. These changes in heat gains to attic ducts have not been tested; however, computer models have been used to make estimates of the impact on cooling bills.

Not all field tests have been able to demonstrate that radiant barriers or even attic insulation are effective in reducing cooling bills. In a field test performed by ORNL in Tulsa, Oklahoma, using 19 full-sized, occupied houses, neither radiant barriers nor attic insulation produced air-conditioning electricity savings that could be measured. As in all field tests, these results are applicable only to houses with similar characteristics as those tested. Unique characteristics of the houses used in this field test included the facts that the houses were cooled by only one or two window air-conditioning units, that the units were able to cool only a portion of the house, and that the occupants chose to limit their use of the units (initial air-conditioning electricity consumption averaged 1664 kilowatt-hours per year or about $119 per year).

How much will I save on my heating and cooling bills?

Your savings on heating and cooling bills will vary, depending on many factors. Savings will depend on the type of radiant barrier application, the size of your house, whether it is a ranch style or a two story house, the amount of insulation in the attic, effectiveness of attic ventilation, the color of the roof, the thermostat settings, the tightness of the building envelope, the actual weather conditions, the efficiency of the heating and cooling equipment, and fuel prices.

Research on radiant barriers is not complete. Estimates of expected savings, however, have been made using a computer program that has been checked against some of the field test data that have been collected. These calculations used weather data from a number of locations to estimate the reductions in heating and cooling loads for a typical house. These load reductions were then converted to savings on fuel bills using average gas furnace and central air-conditioner efficiencies and national average prices for natural gas and electricity.

ASSUMPTIONS. For these calculations, the house thermostat settings were taken to be 78F in the summer and 70F in the winter. In the summer, it was assumed that windows would be opened when the outdoor temperature and humidity were low enough to take advantage of free cooling. Also, it was assumed that the roof shingles were dark, and that the roof was not shaded. The furnace efficiency used was 65 percent, and the air-conditioner coefficient of performance (COP) was 2.34. Fuel prices used were 52.7 cents per therm (hundred cubic feet) for natural gas and 7.86 cents per kilowatt-hour for electricity.

Factors that could make your savings larger than the ones calculated would be: a summer thermostat setting lower than 78F, a winter thermostat setting higher than 70F, keeping the windows closed at all times, lower efficiency furnace or air-conditioner, or higher fuel prices. Factors that could make your savings less than the ones calculated would be: a summer thermostat setting higher than 78F, a winter thermostat setting lower than 70F, light colored roof shingles, shading of the roof by trees or nearby structures, higher efficiency furnace or air-conditioner, and lower fuel prices.

A standard economic calculation was then performed that converts the dollar savings from periods in the future to a "present value". The dollar savings were also adjusted to account for estimates of how prices for natural gas and electricity are predicted to rise in future years. This calculation gives a "present value savings" in terms of dollars per square foot of ceiling area. When this value is multiplied by the total ceiling area, the result is a number that can be compared with the cost of installing a radiant barrier. If the present value savings for the whole ceiling is greater than the cost of a radiant barrier, then the radiant barrier will be "cost effective." A real discount rate of 7 percent, above and beyond inflation, and a life of 25 years were used in the calculations.

Tables 3, 4, and 5 give present value savings for radiant barriers based on average prices and equipment efficiencies. Table 3 applies to the attic floor application, where the effects of dust accumulation have been taken into account. Since dust will accumulate at different rates in different houses, and since the effect of dust on performance is not well known, ranges of values are given for this application. Table 4 applies to radiant barriers attached to the bottoms of the rafters, while Table 5 applies to radiant barriers either draped over the tops of the rafters or attached directly to the underside of the roof deck. For comparison purposes, the same computer program has also been used to estimate present value savings for putting additional insulation in the attic; these values are listed in Table 6. By examining several options, the consumer can compare the relative savings that may be obtained versus the cost of installing the option. Generally, the option with the largest net savings (that is, the present value savings minus the cost) would be the most desirable. However, personal preferences will also enter into a final decision.

If you want a better estimate based on your local fuel prices or other equipment efficiencies, you may use the worksheet in the Appendix. Local fuel prices may be obtained from your local utilities.

Examples of Use of Present Value Tables

Example 1

I live in Orlando, Florida in an 1800 square foot ranch style house. I have R-11 insulation in my attic, and the air-conditioning ducts are in the attic. A contractor has quoted a price for a radiant barrier installed on the bottoms of my rafters and on the gable ends for $400. Would this be a good investment?

For this type of radiant barrier, the appropriate table is Table 4. For Orlando with R-11 insulation, the present value savings is listed as $0.32 when the air-conditioning ducts are in the attic. Multiplying this value by 1800 square feet gives a total of $576. This value exceeds the quoted cost of the radiant barrier of $400, and thus this would be a good investment.

Example 2

I live in Minneapolis, Minnesota in a 2400 square foot two-story house. I have R-19 insulation in my attic, and have no air-conditioning ducts in the attic. A contractor has quoted a price for a radiant barrier installed on the bottoms of my rafters and on the gable ends for $250. Would this be a good investment? Would investment in another layer of R-19 insulation be a better investment? A contractor has quoted a price of $564 for adding this insulation.

For this type of radiant barrier, the appropriate table is Table 4. For Minneapolis with R-19 insulation, the present value savings is listed as $0.08 when there are no air-conditioning ducts in the attic. Since the house is two-story, the ceiling area is 1200 square feet. Multiplying $0.08 by 1200 gives a total of $96. This value is less than the quoted cost of the radiant barrier of $250 and thus this would not be a good investment.

For adding another layer of insulation, the appropriate table is Table 6. For Minneapolis, this table gives a present value savings of $0.57 for adding a layer of R-19 insulation to an existing layer of R-19 insulation. Multiplying this value by 1200 square feet gives a total of $684. This value exceeds the quoted cost of the insulation, and thus this would be a good investment.

Locally Owned and Operated!
Insurance Claims Welcome!

Serving the
Northeast Tarrant County!